

NOTES

Diene Disproportionation Reactions

In 1964 Banks and Bailey reported the discovery of a new catalytic reaction in which linear olefins were disproportionated to homologs of shorter and longer carbon chains (1). For example, propylene was disproportionated to give ethylene and 2-butene. Mechanistically these disproportionation reactions can be explained by a four-center mechanism or the analogous quasi-cyclobutane intermediate suggested by Bradshaw, Howman, and Turner (2). Disproportionation reactions are not limited to monoolefins; dienes also disproportionate. This note discusses a number of reactions where dienes are disproportionated.

EXPERIMENTAL

The catalyst was prepared by impregnating a tungsten oxide-silica catalyst (7% WO_3 -93% SiO_2) (3) with a sodium carbonate solution. After drying and activating the catalyst contained 0.19 wt % sodium oxide.

Five ml of catalyst was placed in a stainless steel reactor mounted in an electric furnace. The catalyst was pretreated in place, usually for 1 hr with dry air at 590°C followed by flushing with nitrogen as the reactor cooled to run temperature. The olefinic feed was passed through a flow control valve, an alumina drying tube, a flow meter, and the reactor. The product was collected in a Dry Ice trap for analysis. The pressure of the system was atmospheric. Phillips' pure grade hydrocarbons were used for the feeds.

Samples of the product were analyzed periodically with a GLC column. The product analyses reported here were of samples collected at the end of 3 hr. The samples

were introduced into the GLC column at pressures below 30 mm Hg to ensure vaporization of the heavier hydrocarbons.

RESULTS AND DISCUSSION

1,3-Butadiene \rightarrow Ethylene and Cyclohexadiene. Butadiene can be disproportionated to yield ethylene and cyclohexadiene, an isomer of hexatriene. To be consistent with the four-center mechanism butadiene should yield ethylene and hexatriene. Experimentally, however, the hexatriene undergoes cyclization to cyclohexadiene. Conditions for this run were as follows: temperature, 538°C; space rate, 26 WHSV; feed, butadiene. Analysis of the product showed, on a weight basis, 29% ethylene, 4% propylene, 12% butenes, 28% cyclohexadiene, and 27% vinylcyclohexenes. Butadiene conversions varied from 3% to 5% during the run.

1,3-Pentadiene disproportionates more readily than butadiene with the product containing a large variety of monoolefins and dienes.

1,3-Butadiene plus Propylene \rightarrow Ethylene and 1,3-Pentadiene. Butadiene and propylene disproportionate to yield ethylene and 1,3-pentadiene, the products expected from the four-center mechanism theory. Conditions for this run were as follows: temperature, 538°C; space rate, 20 WHSV; feed, 46% propylene and 54% butadiene. Analysis of the product showed 10% ethylene, 22% butenes, 22% *trans*-1,3-pentadiene, 14% *cis*-1,3-pentadiene, and 32% butadiene dimers. Feed conversion was 24% and selectivity to ethylene and pentadienes 46%.

*1,3-Butadiene plus *trans*-2-Butene \rightarrow*

Propylene and 1,3-Pentadiene. This reaction is similar to the preceding reaction except that propylene is one of the products instead of ethylene. Conditions for this run were as follows: temperature, 538°C; space rate, 18 WHSV; feed, 45% *trans*-2-butene and 55% butadiene. Analysis of the product showed 6% ethylene, 48% propylene, traces of pentenes, 19% *trans*-1,3-pentadiene, 10% *cis*-1,3-pentadiene, and 17% butadiene dimers. Conversion of the feed was 39% and selectivity to propylene and 1,3-pentadiene, 77%.

1,3-Butadiene plus Isobutene → Ethylene and 4-Methyl-1,3-Pentadiene. Disproportionation of dienes is not limited to straight-chain reactants. Conditions for this run were as follows: temperature, 538°C; space rate, 22 WHSV; feed, 51% isobutene and 49% butadiene. Analysis of the product showed 31% ethylene, traces of propylene and butenes, and 69%

4-methyl-1,3-pentadiene. Conversion was 5%.

2-Methyl-1,3-pentadiene and 3-methyl-1,3-pentadiene were obtained by disproportionating *trans*-2-butene with isoprene. Conversion was 2%.

REFERENCES

1. BANKS, R. L., AND BAILEY, G. C., *Ind. Eng. Chem., Prod. Res. Develop.* 3, 170 (1964).
2. BRADSHAW, C. P. C., HOWMAN, E. J., AND TURNER, L., *J. Catalysis* 7, 269 (1967).
3. HECKELBERG, L. F., BANKS, R. L., AND BAILEY, G. C., *Ind. Eng. Chem., Prod. Res. Develop.* 7, 29 (1968).

L. F. HECKELBERG
R. L. BANKS
G. C. BAILEY

*Phillips Petroleum Company
Bartlesville, Oklahoma 74003*

*Received September 11, 1968;
revised October 8, 1968*

Group VIII Metal-Catalyzed Condensation of Alcohols to High Molecular Weight Ketones

INTRODUCTION AND BACKGROUND

A catalytic reaction was recently reported which distinguished between rhodium metal and $(\text{RhCl}_6)^{-3}$ anion in the liquid phase; the chlorine complex would dehydrogenate 2-propanol to acetone but the metal did not (1). We have been interested in finding a test which could show whether the metal-complex, used to prepare a supported heterogeneous catalyst, survived the catalyst pretreatment. We found that the gas phase 2-propanol reaction could not distinguish between a chlorine containing noble metal catalyst and one which had the chlorine removed by a chemical reaction. However, we wish to report the formation of higher molecular weight ketones from 2-propanol using alumina supported Group VIII metal catalysts.

The homogeneous base-catalyzed condensation of acetone is a well known reaction (2); the condensation products contain olefinic unsaturation. In 1913 it was reported that acetone condensation over a heterogeneous nickel catalyst gave products similar to the base catalyzed reaction (3). Ipatieff and Haensel (4) found that a $\text{Cu-ZnO-Al}_2\text{O}_3$ catalyst was effective for the condensation of alcohols and ketones, but they concluded that only catalysts having both dehydrogenation and dehydration properties could effect condensation. Kawamoto (5) observed small amounts of condensation products formed by a side reaction during the dehydrogenation of 2-propanol over copper catalysts. Bursian *et al.* (6) studied the conversion of 2-propanol over a $\text{Pt-Al}_2\text{O}_3\text{-Na}$ catalyst at